Skip to main content
Version: v0.16.0

Using Schemas to Transform Dates

This example shows how to deal with entities with potentially difficult or inconsistent date fields.

The example data contains eight rows, each with the same date encoded a different way. There are also two different date formats used.

Date    Time    TimeZone    Location
January, 01 2000 01:23:45 +00:00 UK
December, 31 1999 15:23:45 -10:00 Hawaii
January, 01 2000 02:23:45 +01:00 France
January, 01 2000 06:53:45 +05:30 India
01/01/2000 01:23:45 +00:00 Iceland
31/12/1999 15:23:45 -10:00 Hawaii
01/01/2000 02:23:45 +01:00 Germany
01/01/2000 06:53:45 +05:30 Sri Lanka

You can use a sequence with a Transform step to output the data with the dates all in one field.

- <schema> = (
'type': 'object'
'additionalProperties': False
'properties': ('FullDate': ('type': 'string', 'format':'date-time') 'Location': ('type': 'string') )
'required': ['Date', 'Location' ])

- <dateFormats> = ['hh:mm:ss MMMM, dd yyyy zzz', 'hh:mm:ss MM/dd/yyyy zzz']

- fileread 'dates-example.csv'
| FromCSV Delimiter: "\t"
| Arraymap (In <> Set: 'FullDate' To: $"{<>['Time']} {<>['Date']} {<>['TimeZone']}" )
| Transform <schema> DateInputFormats: <dateFormats>
| ToCSV DateTimeFormat: 'hh:mm:ss yyyy-MM-dd'

This sequence does three main things

  • It uses ArrayMap to set the TimeZone field to the concatenation of the original three Time, Date, and TimeZone fields

  • It uses Transform to convert the TimeZone field to a date and remove the non-required fields.

  • Note the two date formats supplied to the Transform step. This document explains how to define your own.

  • It outputs the data with a different DateTimeFormat